Continued Fractions - Solutions

Ryan Fu, Seojin Kim

October 12, 2023

§1 Introduction

Definition 1.1. A finite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots+\frac{1}{a_{k-1+\frac{1}{a_{k}}}^{k}}}}}
$$

where $a_{0}, a_{1}, \ldots a_{k}$ are natural numbers. A continued fraction of the above form can be denoted as [$a_{0}, a_{1}, \ldots a_{k}$] for short.

Exercise 1.2. Simplify each of the following continued fractions:

1. $2+\frac{1}{3+\frac{1}{2}}=\frac{16}{7}$
2. $1+\frac{1}{4+\frac{1}{3+\frac{1}{4}}}=\frac{69}{56}$
3. $6+\frac{1}{9+\frac{1}{4+\frac{1}{2}}}=\frac{507}{83}$
4. $9+\frac{1}{12+\frac{1}{21+\frac{1}{2}}}=\frac{4705}{518}$

Exercise 1.3. Write each of the following as a continued fraction:

1. $0+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}=[0,2,2,2]$
2. $1+\frac{1}{1+\frac{1}{2}}=[1,1,2]$
3. $1+\frac{1}{2+\frac{1}{3+\frac{1}{3}}}=\boxed{[1,2,3,3]}$
4. $1+\frac{1}{5+\frac{1}{6}}=[1,5,6]$

Exercise 1.4. $\frac{10}{7}=1+\frac{1}{2+\frac{1}{3}}$, so $[x, y, z]=[1,2,3]$
Exercise 1.5. $\frac{8}{5}=1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}$. Clearly, the continued fraction has 4 terms not 3 .
Exercise 1.6. $4+\frac{1}{5+\frac{1}{6+\frac{1}{7}}}=\frac{931}{222}$, so $(a, b, c, d)=(4,5,6,7)$

§2 Infinite Continued Fractions

Continued fractions don't necessarily need to be finite.
Definition 2.1. An infinite continued fraction is an expression of the form

$$
\begin{equation*}
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}} \tag{1}
\end{equation*}
$$

Exercise 2.2. https://math.stackexchange.com/questions/1323586/a-real-number-is-rational-iff/ -its-continued-fraction-expansion-is-finite

Definition 2.3. An infinite continued fraction is periodic if a portion of it repeats. More formally, the continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ is periodic if it is of the form $\left[a_{0}, \ldots, a_{r}, a_{r+1} m \ldots a_{r+p}, a_{r}, a_{r+1}, \ldots, a_{r+p}, \ldots\right]$. In this case, we denote it as $\left[a_{0}, \ldots, \overline{a_{r}, \ldots, a_{r+p}}\right]$

Example 2.4

$$
[1, \overline{2}]=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}} \text { is an infinite periodic continued fraction. }
$$

Exercise 2.5.

$$
\begin{gathered}
5+\frac{1}{4+\frac{1}{4+\frac{1}{4+\cdots}}}=[5, \overline{4}] \\
\text { let } u=[5, \overline{4}] \\
u=5+\frac{1}{u-1} \Rightarrow(u-5)(u-1)=u^{2}-6 u+5=1 \Rightarrow u=\frac{6+2 \sqrt{5}}{2}=3+\sqrt{5}
\end{gathered}
$$

Exercise 2.6. Simplify the following:

1. $u=1+\frac{1}{u} \Rightarrow u^{2}+u-1=0 \Rightarrow u=\frac{\sqrt{5}-1}{2}$
2. $u=2+\frac{1}{u+2} \Rightarrow u^{2}-5=0 \Rightarrow u=\sqrt{5}$
3. $u=1+\frac{1}{2+\frac{1}{u}}=1+\frac{u}{2 u+1} \Rightarrow 2 u^{2}-2 u-1=0 \Rightarrow u=\frac{1+\sqrt{3}}{2}$

Exercise 2.7.

$$
\begin{gathered}
\text { let } u=\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+\cdots}}}} \text {, so } u=\sqrt{a+u} \Rightarrow u^{2}=a+u \\
\text { let } u=1+\frac{a}{1+\frac{a}{1+\frac{a}{1+\cdots}}} \text {, so } u=1+\frac{a}{u}=\frac{u+a}{u} \Rightarrow u^{2}=u+a \\
u^{2}=u+a=u^{2}=a+u \text {, so they are equal }
\end{gathered}
$$

Exercise 2.8.

$$
u=5+\frac{1}{3+\frac{1}{u}}=5+\frac{u}{3 u+1} \Rightarrow 3 u^{2}-15 u-5=0 \Rightarrow u=\frac{15 \pm \sqrt{225+60}}{6}=\frac{15+\sqrt{285}}{6}
$$

Exercise 2.9. https://sites.millersville.edu/bikenaga/number-theory/periodic-continued-fractions/ periodic-continued-fractions.html

